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ABSTRACT 

In medical data, addressing imbalanced datasets is paramount for accurate predictive 
modeling. This paper delves into exploring a well-established rebalancing framework 
proposed in previous research. While acknowledged for its effectiveness, the adaptability 
of this framework across diverse medical datasets remains unexplored. We conduct a 
comprehensive investigation to bridge this gap by integrating an ensemble-based classifier 
into the existing framework. By leveraging seven imbalanced medical binary datasets, our 
study comprises three distinct experiments: utilizing standard baseline classifiers from the 
framework (original), incorporating the baseline with an ensemble-based classifier, and 
introducing our novel ensemble-based classifier with the self-paced ensemble (SPE) algorithm. 
Our novel ensemble, composed of decision tree (DT), radial support vector machine (R.SVM), 
and extreme gradient boosting (XGB) classifiers, serves as the foundation for the SPE. Our 
primary objective is to demonstrate the potential improvement of the existing framework’s 
overall performance through the integration of an ensemble. Experimental results reveal 
significant enhancements, with our proposed ensemble classifier outperforming the original 
by 4.96%, 5.89%, 5.68%, 7.85%, and 6.84% in terms of accuracy, precision, recall, F-score, 
and G-mean, respectively. This study contributes valuable insights into the adaptability 

and performance augmentation achievable 
through ensemble methods in addressing 
class imbalances within the medical domain.

Keywords: Ensemble classifier, ensemble learning, 
imbalance classification, machine learning algorithms, 
medical data, predictive modeling, rebalancing 
framework 
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INTRODUCTION

Class imbalance poses a common challenge across various data domains, particularly in 
medical datasets where its presence is unavoidable (Bai et al., 2015; Rahman & Davis, 
2013). Imbalance occurs when the majority class overwhelms instances of the minority 
class (Abraham & Elrahman, 2013). Predictive models trained on imbalanced data often 
exhibit bias, resulting in a higher misclassification rate when predicting the target outcome. 
Conventional sampling methods, such as random oversampling, undersampling, and the 
synthetic minority oversampling technique (SMOTE), are commonly applied to address 
this issue. These methods involve modifying imbalanced datasets to create a more balanced 
distribution, significantly improving the overall performance of classifiers (Fernández et 
al., 2018). 

In the medical domain, the consequences of such misclassifications can be considerably 
more significant, as they may lead to the misdiagnosis of cancerous patients as noncancerous 
or vice versa (Belarouci & Chikh, 2017; Rahman & Davis, 2013). Consequently, various 
cutting-edge techniques for dealing with this issue have emerged (Rahman & Davis, 2013; 
Pes, 2019). One such approach employs the rebalancing framework proposed by Zhao et 
al. (2018), which implements several standard classifiers and relies on four rebalancing 
strategies to address data imbalance. A satisfactory increase in overall classification 
performance has been reported by Zhao et al. (2018), especially in terms of accuracy, 
recall, precision, and F-score. 

Despite promising results, the framework’s effectiveness with medical datasets of 
varying imbalance levels remains unexplored. This uncharted nature motivates the current 
research study. However, the validity and effectiveness of the rebalancing framework may 
vary between datasets based on the imbalance ratio (IR), necessitating classifiers capable of 
enhancing performance across different IR (Mohammed et al., 2020; Krishnan & Sangar, 
2021; Tantithamthavorn et al., 2020; Jiang et al., 2020). 

Therefore, our research investigates the effectiveness of ensemble-based classifiers 
within the Zhao et al. (2018) rebalancing framework while exploring additional datasets, 
aligning with the author’s attention to experimentally test the framework with more 
imbalanced medical datasets.

An ensemble-based classifier is a combination of more than one classifier (Valentini 
& Dietterich, 2004) that performs better than individual ones. Researchers across various 
domains have widely implemented ensembles for enhanced classification (Mohandes et al., 
2018). The advantages of employing an ensemble approach are: (1) it combines stronger 
classifiers to address class imbalance, ensuring efficient imbalance learning (Khalilia et al., 
2011; Cahyana et al., 2019); (2) our previous work (Edward & Rosli, 2021), a systematic 
mapping study (SMS) on ensemble-based classifiers, highlighted the favorability of 
the ensemble approach among researchers in the medical domain, particularly for its 
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effectiveness in diagnostic classification. The SMS also uncovered a prevailing trend where 
many researchers prefer the hard-level majority voting technique as their primary choice 
for ensemble combination methods, especially in medical research. Thus, we selected the 
hard-level majority voting technique as our preferred combination method. These reasons 
alone were enough to spark our interest in exploring this method via Zhao et al. (2018) 
rebalancing framework. 

To further leverage the capabilities of the assembling approach, we adapted our 
proposed ensemble-based classifier as the baseline estimator within the Self-paced Ensemble 
(SPE), an imbalance learning method introduced by Liu et al. (2020). SPE introduces the 
classification ‘hardness’ concept to demonstrate a trained classifier’s difficulty in identifying 
a particular sample. Based on this hardness, SPE iteratively selects the most informative 
majority data samples in accordance with their distribution rather than simply balancing 
the positive and negative data or applying instance weights. Implementing SPE for highly 
imbalanced data is expected to yield significant results (Liu et al., 2020).

This study conducts three experiments to determine whether ensemble-based classifiers 
improve the existing framework. Initially, we assessed the performance of each imbalanced 
dataset used in this study. We compared the results obtained using the original baseline 
classifier recommended by Zhao et al. (2018) framework with those achieved with 
ensemble-based baseline classifiers. Subsequently, we conducted another experiment 
with our proposed ensemble-based classifier to evaluate the effectiveness of the ensemble 
approach. The results were then comprehensively compared to determine which method 
demonstrated a more substantial performance improvement.

The overall results of our experiments revealed that our proposed ensemble-based 
classifiers with SPE outperformed both the original baseline and the baseline with the 
ensemble approach in terms of overall performance measures (accuracy, precision, recall, 
F-score, and G-mean). This outcome highlights the effectiveness of the ensemble method 
in addressing class imbalances in medical data, demonstrating its potential for enhanced 
performance in imbalance learning. In summary, the key contributions of this article are 
as follows:

1.	 To investigate and provide a comprehensive analysis of the effectiveness of 
ensemble-based classifiers in the rebalancing framework proposed by Zhao et al. 
(2018).

2.	 To explore and experimentally test the framework of Zhao et al. (2018) with more 
imbalanced medical datasets.

3.	 To introduce and evaluate SPE(EM), a novel ensemble approach. SPE(EM), 
combining decision tree (DT), radial support vector machine (R.SVM), and 
extreme gradient boosting (XGB) classifiers, outperformed the baseline with 
significant improvements (4.96%, 5.89%, 5.68%, 7.85%, and 6.84%) in accuracy, 
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precision, recall, F-score, and G-mean. This contribution extends the understanding 
of ensemble methods in addressing class imbalances in medical datasets.

THE FRAMEWORK

As previously mentioned, the framework we adopted and tested in this research study 
is the rebalancing framework developed by Zhao et al. (2018). In their research, the 
authors experimented with medical incidents due to look-alike (LASA) mix-ups dataset, 
which exhibited class imbalance. This dataset comprises 227 records with structured text, 
including eight features and binary class target variables (LASA and non-LASA). The 
authors’ framework demonstrated a notable ability to classify LASA incident reports with 
high predictive accuracy. Although their primary focus was on incident report classification, 
the authors suggested that their rebalancing framework holds broad applicability, extending 
beyond the classification of medical incident reports to address other medical datasets with 
similar imbalanced properties. 

Zhao et al.’s (2018) framework incorporates algorithmic and data-level approaches to 
rebalance the unequal class distribution to address the class imbalance issue. A detailed 
investigation was conducted to assess the impact and performance of various classifiers, 
utilizing a sequence of three key stages within the framework. Specifically, these stages are 
based on classifier selection, incorporating four rebalancing strategies, and leave-one-out 
cross-validation (LOOCV). In the initial stage, the performance of each candidate classifier 
is evaluated based on standard metrics (accuracy, precision, recall, and F-score) to determine 
the best-performing classifier. Zhao et al. (2018) suggest that candidate classifiers can be 
linear or non-linear for binary classification. However, for their experimental studies, they 
opted for logistic regression (LR), support vector machine with linear kernels (L.SVM), 
support vector machine with radial kernels (R.SVM), and decision tree (DT) as their 
baseline classifiers.

The second stage involves rebalancing imbalanced medical data using four 
strategies: the SMOTE (Chawla et al., 2002), cost-sensitive learning (Elkan, 2013), 
and random oversampling and undersampling techniques (Japkowicz, 2000). Similarly, 
when training with the base classifiers selected from the previous stage, the framework 
suggests determining which of the four strategies yields the most substantial performance 
improvements across various parameter configurations for each rebalancing strategy. The 
available hyperparameter tuning range must be developed using criteria for each rebalancing 
strategy’s parameter/threshold. 

As Zhao et al. (2018) suggested, datasets with imbalanced distributions need to 
be rebalanced (using each strategy) and validated using the LOOCV in stage three. A 
conventional cross-validation technique in which one sample is excluded (leave-out) 
for validation and training is performed on the other samples supplied to the model; this 
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procedure is repeated on all samples. LOOCV is widely favored by many researchers for 
extensive validation processes, where the number of cross-validations is determined by 
the number of instances in a dataset (Cheng et al., 2017). In the medical domain, it has 
been implemented in many model validations, such as the biomedical phenotype predictive 
model (deAndrés-Galiana et al., 2016), Alzheimer’s classification model (Cuingnet et 
al., 2011), breast cancer model (Liang et al., 2018), and kidney stone predictive model 
(Shabaniyan et al., 2019).

Table 1 summarizes the adapted framework process by Zhao et al. (2018) in stages. The 
framework provides detailed insight into the framework we adapted for our experiments.

Table 1
Stages of the adapted (Zhao et al., 2018) rebalancing framework process 

Stage Process Description Selections
1 Classifier
•	 R.SVM baseline

Selecting base 
linear or non-linear

Candidate classifiers can be 
either
Select the classifier that 
performs best as

•	 LR
•	 L.SVM
•	 DT

2 Rebalancing strategies
•	 Strategy parameter/

threshold
•	 Sensitive learning

Incoporating 
strategies 
according to results 
of each parameter 
tune

Select best-performed 
rebalancing 
Oversampling
Tune according to each 
rebalancing

•	 SMOTE
•	 Random
•	 Random 

undersampling cost

3 Validate model Estimate finalized model 
performance

•	 LOOCV

MATERIALS AND METHODS

Ensemble-based Classifier

A unified classifier overcomes the limitations of each counterpart in terms of accuracy 
and performance (Utami et al., 2014). As mentioned earlier, we employed the hard-level 
technique using majority voting for classifier combinations in this study. This approach 
combines the highest predicted class output from each classifier. For instance, if six out 
of eleven classifiers vote for the same class output, the class with the highest number of 
votes is considered the final result. The formulation for our hard-level majority voting, 
Em, is calculated using Equation 1:

𝐸𝐸𝐸𝐸 =  �𝑑𝑑𝑖𝑖 ,𝑘𝑘

𝑀𝑀

𝑖𝑖=1

=  ℎ
max
𝑗𝑗=1

�𝑑𝑑𝑖𝑖,𝑗𝑗

𝑀𝑀

𝑖𝑖=1

 						      [1]

where M is the total number of classifiers and h is the total number of classes. However, 
the class that received the same maximal vote (tie) can be resolved using the weighted 
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majority voting (Kuncheva, 2014) to choose the class with higher weighted votes. The 
weighted majority voting is calculated using Equation 2:

�𝑏𝑏𝑖𝑖𝑑𝑑𝑖𝑖,𝑘𝑘
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𝑖𝑖=1

 							       [2]

where bi is the weighting coefficient for classifier Di. 

Self-paced Ensemble

Classifiers tend to prioritize a class with more samples when learning from highly skewed 
data, leading to biased predictions. Consequently, the ability of classifiers to distinguish 
between minority and majority classes is highly dependent on the data distribution they learn. 
Conventional rebalancing techniques (e.g., random oversampling, undersampling, SMOTE) 
offer common approaches for imbalanced learning. Going further, Liu et al. (2020) introduce 
a novel imbalance learning method, the Self-paced Ensemble (SPE). SPE incorporates the 
concept of ‘hardness’ in classification, describing the difficulty of categorizing a sample for a 
given classifier. Derived from this difficulty, SPE systematically chooses the most informative 
data samples that align with their distribution. Equation 3 calculates the hardness:

3 calculates the hardness: 

 

𝐻𝐻(𝑥𝑥,𝑦𝑦,𝐹𝐹) =  1
𝑛𝑛
∑ |𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 |𝑛𝑛
𝑖𝑖=1    [3] 

 

where H is the hardness function,  

						      [3]

where H is the hardness function, F can be any chosen classifier and dataset as (x,y). F(xi) 
indicates the classifier’s probability. Liu et al. (2020) state that SPE can be adapted to any 
classifier. As mentioned previously, to align with the use case of this study, we adapted 
our proposed ensemble-based classifier, Em, as the SPE base estimator to enhance its 
effectiveness. The new adapted hardness function with Em is defined in Equation 4:

Em is defined in Equation 4: 
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SPE enhances the signi 

				    [4]

SPE enhances the significance of boundary samples by incorporating an undersampling 
technique to reduce the presence of noisy and insignificant data samples. It is achieved 
by dividing most samples into k bins based on their hardness rating, where k is the 
hyperparameter. Each bin is then undersampled to create a balanced dataset, ensuring that 
every bin has similar hardness. The formulation of SPE with our adapted Em, SPE(Em), 
is shown in Equation 5:

formulation of SPE with our adapted Em, SPE(Em), is shown in Equation 5: 
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where  Bl is used to denote the l-th bin. 

			   [5]

where Bl is used to denote the l-th bin.
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Performance Evaluation Metrics

The most commonly used metrics for classifier model performance are accuracy, precision, 
and recall. Accuracy represents the overall proportion of correctly predicted instances 
across all classes, calculated using Equation 6:

calculated using Equation 6: 
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where TP is the true positive, TN is the true negative, and FP is the false negative.  

Meanwhile, precision focuses on the true positive rate within the positive predictions, while recall 

measures the ability of classifiers to correctly identify the actual positive class (Grandini et al., 

2020). Equation 7 calculates the precision, while Equation 8 calculates the recall: 
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where FN is the false negative.
However, accuracy alone may not offer a comprehensive view of a classifier’s 

performance in class imbalance due to the bias inherent in the class distribution between the 
minority and majority classes. High precision may come at the cost of low recall and vice 
versa when it comes to precision and recall. Maintaining an appropriate balance between 
these metrics becomes crucial for effectively handling imbalanced data. Therefore, depending 
solely on these metrics in an imbalanced class scenario can be misleading (Akosa, 2017).

In this study, we have incorporated F-score and G-mean as additional metrics to 
obtain a more accurate and comprehensive assessment in such scenarios. The F-score, in 
particular, offers a balanced evaluation that takes into account both precision and recall, 
as it offers a well-rounded assessment of a classifier’s performance. It considers FPs and 
FNs to determine the harmonic mean of precision and recall (Phoungphol et al., 2012). 
Equation 9 calculates the F-score:

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)

 					     [9]

The G-mean metric offers valuable insights into a classifier’s capability to classify 
minority class instances, a crucial metric for class imbalance. Additionally, it considers 
both TPs and TNs, ensuring a comprehensive evaluation of a classifier’s performance with 
equal weight given to both classes. Consequently, it prevents excessive bias toward the 
majority class, fostering a more balanced approach. (Błaszczyk & Jedrzejowicz, 2021). 
Equation 10 calculates the G-mean:

𝐺𝐺 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = √𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 					     [10]
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Rebalancing Strategies

As per the recommendation by the adapted framework, this study incorporates four 
rebalancing strategies: random oversampling, random undersampling, SMOTE, and CSL. 
Random oversampling involves duplicating instances from the minority class to balance 
class distribution (Barua et al., 2014). This strategy is effective when the dataset has a 
small number of minority class instances, but it may lead to overfitting if not applied 
cautiously. Conversely, random undersampling randomly reduces the number of majority 
class instances to match the minority class, making it suitable for datasets with a large 
majority class and when computational efficiency is a concern. However, it may lead to 
the loss of valuable information from the majority class (Barua et al., 2014).

SMOTE generates synthetic instances in the minority class by interpolating between 
existing instances, thereby enhancing the representation of the minority class and achieving 
a balanced class distribution while removing bias. It is commonly employed in various 
imbalance learning scenarios and proves particularly useful when limited data is available 
for the minority class (Kotsiantis et al., 2006). CSL, on the other hand, assigns different 
misclassification costs to different classes, emphasizing the importance of the minority 
class. This approach is beneficial in cases of severe class imbalance, where misclassifying 
the minority class carries higher consequences (Krawczyk, 2016). CSL aims to reduce the 
misclassification of the minority class by making it more costly for the classifier.

The rationale for choosing which rebalancing strategy to use depends on the 
specific characteristics of the dataset, such as the class distribution, dataset size, and the 
consequences of misclassification. While one strategy may yield enhanced performance for 
a certain dataset, it might not prove as effective for another. The choice of strategy can also 
be influenced by the type of classifier used, as different classifiers may interact differently 
with rebalancing techniques (Cipriano et al., 2021), leading to varied performance 
outcomes. Therefore, this study independently implemented each strategy to identify the 
most effective strategy for the specific dataset.

Experimental Setup

In our first experiment, we assessed the overall performance of the rebalancing framework 
outlined by Zhao et al. (2018) on each dataset. It entailed using the initial baseline classifiers 
recommended within the framework: LR, L.SVM, R.SVM, and DT. We directly applied 
these classifiers, compared their results, and identified the top-performing classifier as our 
baseline. This experimental approach is denoted as ‘Experiment 1’. 

In our second experiment, rather than comparing individual candidate classifiers, we 
amalgamated them into a unified classifier using hard-level majority voting. Following 
this, we applied the framework utilizing the ensemble baseline classifier to assess its 
performance. This experimental approach is designated as ‘Experiment 2’.
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Finally, in the third experiment, we employed our proposed SPE with an ensemble-
based classifier as the base estimator, denoted as SPE(Em). Em represents a combination of 
DT C4.5, R.SVM, and XGB. This experimental approach is designated as ‘Experiment 3’. 

The DT c4.5 algorithm is a conventional yet powerful classification method frequently 
used to solve medical diagnosis problems (Breiman, 2001). Radial is a well-known kernel 
function that is utilized in a variety of kernelized learning techniques. It is part of a kernel 
function embedded in the standard support vector machine (SVM). Hence, the name 
R.SVM. Kernels is the application-specific measure of similarity between data instances 
used by SVM. R.SVM proved to show significant classification performance in the medical 
domain for predicting diseases (Harimoorthy & Thangavelu, 2021). Meanwhile, XGB is a 
more regularized, expanded version of a gradient boosting method that provides a robust 
boosted tree model with high accuracy and is known for its ability to classify imbalanced 
datasets (Cahyana et al., 2019; Ma et al., 2022). 

Finally, we compared the performance results obtained from each experiment to 
ascertain which experiment yielded robust overall performance across all datasets. Five 
evaluation performance metrics were used to measure the performance in each experiment: 
accuracy, precision, recall, F-score, and G-mean to measure the performance in each 
experiment. Additionally, we incorporated the receiver operating characteristic curve (ROC) 
and root mean square error (RMSE) as part of our evaluation metrics. These metrics are 
commonly used to evaluate the performance of a model in a binary classification. The 
overall workflow is shown in Figure 1. Our experiment setup codes are available on GitHub 
(https://tinyurl.com/vxphztfe).

Figure 1. Workflow of experimental approaches
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Statistical Test

In this study, we employed the paired t-test as the preferred statistical analysis method 
to assess the significance of the results. The paired t-test is a well-known statistical test 
that allows us to compare the means of two related groups while taking into account the 
dependency between them (Newcombe, 1992). Additionally, it assesses whether there is 
a significant difference in the means of paired observations while taking into account that 
the observations are dependent. It does so by calculating a t-statistic that measures the 
standardized difference between the means of the paired observations. 

In the case of the paired t-test, it is calculated based on the differences between paired 
observations. Meanwhile, the p-value associated with the t-statistic indicates the likelihood 
of observing such a difference by chance. A lower p-value indicates a higher degree of 
statistical significance. If the p-value is below a predetermined significance level (<0.05), 
we can infer a statistically significant difference in the performance outcomes between the 
experiments. By employing the paired t-test, we aimed to rigorously assess the statistical 
significance of the improvements observed in Experiment 3, thus providing robust evidence 
of the effectiveness of our proposed ensemble-based classifier.

Datasets

Our experiments utilized seven imbalanced medical datasets from the UC Irvine machine 
learning repository (UCI), Kaggle, and Knowledge Extraction based on Evolutionary 
Learning (KEEL). These datasets are identified as Heart disease (Cleveland0vs4), eColi4, 
Yeast3, SPECT, SPECTF, Parkinson, and Cirrhosis. Each dataset exhibits a distinct level 
of imbalanced class distribution. The datasets are structured in a tabular and binary format. 
We calculated the class ratios for each dataset, representing the level of imbalance as the IR. 
A higher IR indicates a more imbalanced distribution (Zhu, Guo, & Xue, 2020). Equation 
11 is used to calculate the IR for a binary class problem:

𝐼𝐼𝐼𝐼 =
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

 									        [11]

where Nmaj is the number of majority instances, and Nmin is the number of minority instances.
Note that in this study, our focus is solely on binary classification. We selected 

datasets initially formatted for binary classification to maintain the binary setting. Table 
2 summarizes the structure of these datasets. It shows that the Cirrhosis dataset has the 
highest level of imbalance, with IR = 18.90. It is followed by the eColi4 and Cleveland0vs4 
datasets, with IR = 15.80 and 12.62, respectively. The others have IR below 8.10, and 
Parkinson has a minimum IR=3.06.
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RESULTS 

To facilitate readers’ understanding of the experimental part, we run each experiment 
according to the process explained in the previous discussion. We then discuss and compare 
the results with and without the rebalancing strategy applied.

Experimental Results

We executed the original framework from Zhao et al. (2018) across all the imbalanced 
datasets. The main focus was to assess the performance of each candidate classifier 
recommended by the framework and identify the classifier that demonstrated the highest 
performance on each dataset. In our experiments, we performed LOOCV for stages 1,2 
and 3. We then record the performance of each stage. The results for stages 1 and 3 are 
shown in Table 3, which shows the average LOOCV results of all experimental approaches 
with and without the rebalancing strategy applied. Meanwhile, the results for stage 2 are 
shown in Table 4.

The analysis based on the experimental results is as follows:
1.	 According to Table 3, the datasets highlighted in bold demonstrated the best overall 

performance on each dataset in terms of accuracy, precision, recall, F-score, and 
G-mean. The left side of the table (no rebalancing) shows that all models have 
relatively acceptable accuracy but low values for the other metrics. The imbalanced 
nature of data distribution contributes to this degradation, especially in Cirrhosis, 

Table 2
Summary of imbalanced medical datasets

Dataset No. of 
Records

No. of 
Features

Class Distribution Imbalance Ratio
(Nmaj/Nmin)

Source
Class Samples Percentage (%)

Cleveland0vs4 177 13 0
1

164
13

92.65%
7.35%

12.62 KEEL1

eColi4 336 7 0
1

316
20

92.65%
5.95%

15.80 KEEL1

Yeast3 1484 8 0
1

1321
163

89.02%
10.98%

8.10 Kaggle2

SPECT 267 22 0
1

55
212

20.60%
79.40%

3.85 UCI3

SPECTF 267 44 0
1

55
212

20.59%
79.41%

3.85 UCI3

Parkinson 195 22 0
1

48
147

24.61%
75.39%

3.06 UCI3

Cirrhosis 418 13 0
1

21
397

5.02%
94.98%

18.90 Kaggle2

1http://www.keel.es; 2https://www.kaggle.com/; 3http://archive.ics.uci.edu/ml
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eColi4, and Cleveland0vs4. The ensemble baseline in Experiment 2 performed 
poorly due to the individual weak learners underachieving the final output. 
However, SPE(Em) in Experiment 3 achieved considerably adequate balance 
results in all the performance measures across most of the dataset. For instance, 
it has a higher G-mean in Cirrhosis with 68.57%, 89.71% for Cleveland0vs4, and 
91.76% for eColi4.

2.	 Table 3, on the right side of the table (with the best rebalancing strategy), shows 
that all experimental models substantially improved overall performance across 
all the metrics. Rebalancing data contributes to better classifier performance.

3.	 Comparing the experimental results in Table 3, SPE(Em) outperforms the other 
experiment models with significant improvements, followed by Experiment 2 
and Experiment 1. For instance, SPE(Em) achieved an increase of F-score from 
75.73% to 91.15% in the Cirrhosis dataset after rebalancing with the best strategy. 
Experiment 2 slightly outperforms Experiment 1 in terms of f-score and G-mean, 
especially in Cleveland0vs4, eColi4, Yeast3, and Cirrhosis. Notice that the results 
for Experiment 3 have adequate performance even without rebalancing and 
achieved slightly better performance after rebalancing. 

Table 4 compares the best-selected base classifier and rebalancing strategy with the 
best performance. For SMOTE, the number of oversampled minority instances, α, and 
undersampled majority instances, γ, are controlled by these two parameters, respectively. 
SMOTE handles imbalanced datasets by oversampling the minority class. Even if the 
examples provide no new information to the model, SMOTE will duplicate the instances 
from the minority class and construct new instances by synthesizing the existing examples 
(Chawla et al., 2002). We applied SMOTE during the LOOCV to resample each training 
fold and validate on the test fold; the same approach also applies to the random sampling 
(under and oversampling) method. 

Note that for each rebalancing strategy, we only applied the parameter settings that 
showed the highest improvement in overall results. Table 4 shows that Cost-sensitive 

Table 4
A comparison of the selected base classifier and rebalancing strategy gives the best performance with LOOCV

Experiment Dataset Best Base 
Classifier

Best Rebalancing Strategy
Best Strategy Best Parameter Setting

Exp 1 Cleveland0vs4 L.SVM SMOTE α = 0.68,γ = 0.85
eColi4 DT Oversampling ratio = 0.85
Yeast3 L.SVM Oversampling ratio = 0.35
SPECT L.SVM SMOTE α = 0.5,γ = 0.5
SPECTF L.SVM Oversampling ratio = 0.68
Parkinson L.SVM SMOTE α = 0.75,γ = 0.35
Cirrhosis0vs4 L.SVM Undersampling Ratio = 0.5
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learning (CSL), oversampling and SMOTE performed best with most of the datasets in 
all experiments. Most datasets in Experiment 1 were best rebalanced with oversampling, 
while Experiments 2 and 3 favored the other sampling methods.   

Overall Results

Per the framework’s recommendation, we performed the LOOCV with varying repetitions 
according to the number of instances on each dataset (Zhao et al., 2018). We obtained the 
results and recorded them as the average validation performance across all datasets by an 
experimental approach. Table 5 presents a comparative analysis of overall performance 
metrics, as average LOOCV across all datasets for each experimental approach.

According to Table 5, Experiment 1 with baseline classifier (LR, L.SVM, R.SVM and 
DT) performs at 84.10%, 79.34%, 80.71%, 77.53%, and 76.70% in terms of accuracy, 
precision, recall, F-score, and G-mean, respectively. In Experiment 2, there was a noticeable 
increase in F-score and G-mean by 81.36% and 79.70%; however, recall declined to 75.32%. 
Meanwhile, the average performance obtained in Experiment 3 was 89.06%, 85.23%, 
86.39%, 85.38%, and 83.54% in terms of accuracy, precision, recall, F-score, and G-mean, 
respectively. Overall, the proposed method used in Experiment 3 has improved the overall 
performance compared with the baseline conditions (Experiment 1) by 4.96%, 5.89%, 5.68%, 
7.85%, and 6.84% in terms of accuracy, precision, recall, F-score, and G-mean respectively. 
The results also show that the combined baseline classifier in Experiment 2 has increased 
performance and is slightly better than Experiment 1, especially in the F-score of 81.36%.  

Experiment Dataset Best Base 
Classifier

Best Rebalancing Strategy
Best Strategy Best Parameter Setting

Exp 2 Cleveland0vs4 Baseline 
Ensemble 
(LR+L.SVM+
R.SVM+DT)

Oversampling ratio = 0.85
eColi4 CSL Threshold = 0.015
Yeast3 Oversampling ratio = 0.5
SPECT CSL Threshold = 0.25
SPECTF SMOTE α = 0.65,γ = 0.65
Parkinson SMOTE α = 0.5,γ = 0.5
Cirrhosis0vs4 CSL Threshold = 15

Exp 3 Cleveland0vs4

SPE(Em)

Undersampling ratio = 0.15
eColi4 CSL Threshold = 0.5
Yeast3 CSL Threshold = 0.015
SPECT Undersampling ratio = 0.28
SPECTF SMOTE α = 0.65,γ = 0.65
Parkinson Oversampling ratio = 0.75
Cirrhosis0vs4` Oversampling Ratio = 0.1

Table 4 (continue)
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Table 5 
Average LOOCV performance comparison on all datasets for each experimental approach

 xp. Classifier
Performance Achieved

Acc Prec Rec F-score G-mean
Exp 1 Baseline: LR, L.SVM,R.SVM,DT 84.10% 79.34% 80.71% 77.53% 76.70%
Exp 2 Baseline En 85.04% 89.14% 75.32% 81.36% 79.70%
Exp 3 SPE(Em) 89.06% 85.23% 86.39% 85.38% 83.54%

SPE(Em) Increase from Exp 1 +4.96% +5.89% +5.68% +7.85% +6.84%

Acc= Accuracy, Prec = Precision, Rec = Recall

The ROC, which plots the true positive rate (TPR) against the false positive rate (FPR) 
for each experiment, is depicted in Figure 2. These are used to assess the robustness of the 
three experimental approaches. Applied by many researchers, ROC curves are a useful 
way to evaluate imbalanced data (Turlapati & Prusty, 2020; Phoungphol et al., 2012; Yao 
& Chen, 2019). We performed the ROC analysis with the LOOCV. The area under ROC 
(AUROC) curves for each approach are shown in blue, green, and red for Experiments 1, 2 
and 3, respectively, in Figure 2. The performance of a ‘random guessing classifier’ for the 
class of observations is depicted by the grey dashed line in each figure (no-discrimination 
line). A successful classification technique should provide points close to or in the top part 
of the graph (0,1) (Saito & Rehmsmeier, 2015; Mandrekar, 2010).

All plots of TPR versus FPR lie above the grey line, indicating that all three approaches 
are able to handle the binary class classification problem. However, the ROC for SPE(Em) 
in Experiment 3 is closer to coordinate (0,1) on Cleveland0vs4, eColi4, SPECT, SPECTF, 
Parkinson, and Cirrhosis with AUC 0.97, 0.99, 0.83, 0.84, 0.96, and 0.73, respectively. 
However, all experiments achieved a similar AUC of 0.97 on the Yeast3 dataset, with 
Experiment 3 having a slightly closer curve, followed by the second-best model in 
Experiments 2 and 1. Decisively, Experiment 3 demonstrates higher ROC results than 

Table 6
RMSE of all experimental models on each dataset

Dataset
Exp 1 Exp 2 Exp 3
RMSE RMSE RMSE

Cleveland0vs4 0.36 0.21 0.24
eColi4 0.17 0.15 0.14
Yeast3 0.22 0.2 0.21
SPECT 0.57 0.4 0.4
SPECTF 0.4 0.42 0.43
Parkinson 0.35 0.32 0.25
Cirrhosis 0.23 0.21 0.19
Average 0.3286 0.2729 0.2657

the other two experiments across most of 
the datasets, indicating the model could 
significantly distinguish between the positive 
and negative classes for better classification.

We also record the RMSE on each fold 
of LOOCV with respect to each dataset to 
evaluate the error rate. The square root of 
MSE is referred to as RMSE. The error rate 
is a percentage measure of the difference 
between the actual and estimated values. 
The lower the RMSE (>=0), the lower the 
error rate. The RMSE is reported in Table 6.
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Figure 2. ROC curves for each dataset with different experimental approaches: (a) Cleveland0vs4; (b) 
eColi4; (c) Yeast3; (d) SPECT; (e) SPECT; (f) Parkinson; and (g) Cirrhosis
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As shown in Table 6, the SPE(Em) in Experiment 3 performed best with RMSE values 
of 0.14, 0.25, and 0.19 for eColi4, Parkinson’s, and Cirrhosis, respectively. Averaged at 
0.2657 overall RMSE. While Experiment 2 has an RMSE average of 0.2729, it is slightly 
closer to Experiment 3. Experiment 1 was performed at an RMSE value of 0.3286, distinctly 
higher than the other experiments. Comparing the experimental models, SPE(Em) seems 
to have a slight edge over the Experiment 2 model.

Table 7
Paired t-test statistical results of Experiment 3 with the other two experimental approaches

Paired Differences

t df p-value
Mean Std. 

Deviation

Std. 
Error 
mean

95% Confidence Interval 
of the Difference

Lower Upper
Exp 3 – Exp 1 6.24 1.0026 0.4484 4.990 7.4890 12.4550 4 .000239
Exp 3 – Exp 2 3.81 4.7412 2.1203 -2.079 9.6950 1.6063 4 .1835

Table 7 shows the statistical test results using the paired t-test between Experiment 3 
and the other two experimental approaches. The comparison between Experiment 3 and 
Experiment 1 revealed a significant difference in performance. Experiment 3 displayed a 
substantial improvement with a mean difference of 6.24, a low standard error (0.4484), 
and a narrow confidence interval (4.990 to 7.4890). Additionally, the high t-statistic 
(12.4550) and the extremely low p-value (0.000239) emphasized the statistical significance 
of Experiment 3’s superior performance over Experiment 1. Meanwhile, the comparison 
between Experiment 3 and Experiment 2 was not statistically significant due to its p-value 
of 0.1835, which is more than the significant level of 0.05. However, it is important to 
note that both Experiment 3 and Experiment 2 utilized the same ensemble method. It 
highlights the effectiveness of the ensemble approach, as both Experiment 3 and Experiment 
2 consistently outperformed Experiment 1, the baseline method. Although statistical 
significance may not be established in every case, the shared use of the ensemble method 
highlights its effectiveness in enhancing overall performance.

DISCUSSION

This study presents our investigation into the performance of ensemble-based classifiers 
within the Zhao et al. (2018) framework, employing seven imbalanced datasets. Our 
experimental results clearly indicate that rebalancing methods enhance the overall predictive 
learning of classifiers (Table 3). To evaluate the performance of each experimental model, 
we LOOCV for Stages 1 to 3 and recorded the results. Significantly, the performance of 
each model improved, with SPE(Em) in Experiment 3 demonstrating the best overall 
performance, followed by Experiment 2 and 1. Our primary metrics for imbalance learning 
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are AUROC, F-score, and G-mean. Specifically, the F-score is apt for discriminating 
between the minority and majority classes. AUROC summarizes a model’s capacity to 
discriminate between classes, and G-mean measures the minority class performance. 
In terms of overall performance (Table 5 and Figure 2), our proposed SPE(Em) yielded 
significant results for all three metrics, followed by the baseline ensemble in Experiments 
2 and 1. 

SPE(Em) also improved the overall performance compared to the baseline by 4.96%, 
5.89%, 5.68%, 7.85% and 6.84% in accuracy, precision, recall, F-score, and G-mean, 
respectively. The improved performance observed in Experiments 2 and 3 is attributed to 
utilizing an ensemble of classifiers, particularly stronger classifiers capable of mitigating 
class imbalances. It aligns with findings from prior studies (Jiang et al., 2020; Valentini & 
Dietterich, 2004) that demonstrate how incorporating ensemble methods leads to a unified 
improvement in overall performance. In Experiment 3, boosting the performance of the 
ensemble classifier (R.SVM, DT, and XGB) with SPE showed increased results. It is also 
relevant to point out that the ensemble-based classifiers can achieve consistent and stable 
performance with increased results compared to the baseline (Experiment 1). Therefore, 
classifying imbalanced data proves to have a significant impact on the objective of this 
study.

Experiment 1 served as the essential baseline for comparison with the other two 
experiments; hence, we refer to it as the benchmark experiment. By comparing the results 
of this benchmark experiment, we have demonstrated that the proposed ensemble-based 
classifier in Experiment 3 achieved superior outcomes. The findings from both Experiments 
2 and 3 offer compelling evidence of the effectiveness of ensemble-based classifiers in 
enhancing the existing framework (Zhao et al., 2018). Consequently, the results from 
Experiment 3 will serve as the cornerstone for our future endeavors in developing a 
rebalancing framework integrated with ensemble-based classifiers soon.

The results of these experiments are in line with Zhao et al. (2018), which further 
supports its applicability on various applications not just limited to medical incident reports 
but also various medical data with similar class imbalanced properties. Additionally, it is 
also worth mentioning that these results are consistent with previous studies implementing 
ensemble-based classifiers to address class imbalances in medical data (Zhu et al., 2015; 
Sandhan & Choi, 2014). Notably, prior similar works (Krishnan & Sangar, 2021; Song 
et al., 2022; Bi & Ma, 2021; Tang et al., 2021) incorporating ensemble methods in their 
rebalancing frameworks have shown significant results, further supporting the effectiveness 
of ensembles in handling class imbalances. That said, this study is not a replacement 
for the original framework by Zhao et al. (2018); instead, it provides ample insight and 
opportunities for researchers to explore more ensemble disciplines in addressing class 
imbalanced problems in different domains. Future studies may still implement Zhao et al.’s 
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(2018) for class imbalance; however, with the results of this experiment, our future works 
will involve a new multi-class rebalancing framework incorporating an ensemble method.

LOOCV was used to evaluate the finalized model, as recommended by Zhao et al.’s 
(2018) framework. The downside of using LOOCV is that it requires a high time complexity, 
depending on the number of replications applied. Nonetheless, due to the small dataset used 
by the authors (Zhao et al., 2018), this issue was inconsequential to their research and was 
neglected. However, this is not the case in our experiment since our datasets have varying 
sizes (especially Yeast3). Despite the time complexity concern, we opted to use LOOCV 
to ensure a comparative analysis of Zhao et al.’s (2018) framework with minimal bias. In 
future works, we may explore using k-fold cross-validation as a more convenient method 
for estimating model performances.

Furthermore, it is worth noting that this study is limited to imbalanced binary 
classification problems, as was true in the previous authors’ results (adapted framework). 
It ensures a fair comparison while maintaining fidelity to the framework and avoiding 
potential bias.

In this study, we investigated the imbalanced nature of the medical dataset with a 
state-of-the-art rebalancing framework combined with our proposed ensemble approach 
(Zhao et al., 2018). However, we also observed that class imbalance is not the sole issue 
in the medical domain. Another complicating factor is the limited availability of data. 
Due to strict privacy regulations and data-sharing constraints, medical data has become 
scarce. Consequently, many machine learning researchers resort to publicly available 
medical datasets. For this reason, we could not obtain more medical datasets with high 
dimensionality; hence, the small sample size dataset (Cleveland0vs4, Parkinson, SPECT, 
and SPECTF) was used in our experiment. Since our focus is on imbalanced learning, 
these seven publicly available datasets proved sufficient for this study. However, we 
plan to explore state-of-the-art synthetic data generation methods in future works, such 
as Generative Adversarial Networks (GAN) and Variational Autoencoders (VAE). These 
techniques offer the advantage of creating synthetic data that closely resembles real-world 
data (Abedi et al., 2022; Elbattah et al., 2021).

CONCLUSION

This paper comprehensively analyses an ensemble-based classifier within a rebalancing 
framework for imbalanced medical data. Our experimental results demonstrate significant 
performance improvements, particularly incorporating SPE(Em) in Experiment 3. The 
effectiveness of ensemble-based classifiers in addressing class imbalances is highlighted, 
with consistent performance enhancements observed across experimental approaches. 
Additionally, imbalanced data are prevalent in the medical domain, encompassing 
binary and multi-class classification scenarios. Although this study is limited to binary 
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classification, it becomes evident that the issue also exists in the context of multi-class 
classification. Therefore, we intend to develop a multi-class rebalancing framework 
incorporating an ensemble-based classifier to address the challenges of multi-class 
imbalanced datasets in the medical domain.
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